首页> 外文OA文献 >The posterior-Viterbi: a new decoding algorithm for hidden Markov models
【2h】

The posterior-Viterbi: a new decoding algorithm for hidden Markov models

机译:后维特比:隐马尔可夫模型的一种新的解码算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Hidden Markov models (HMM) are powerful machine learning toolssuccessfully applied to problems of computational Molecular Biology. In apredictive task, the HMM is endowed with a decoding algorithm in order toassign the most probable state path, and in turn the class labeling, to anunknown sequence. The Viterbi and the posterior decoding algorithms are themost common. The former is very efficient when one path dominates, while thelatter, even though does not guarantee to preserve the automaton grammar, ismore effective when several concurring paths have similar probabilities. Athird good alternative is 1-best, which was shown to perform equal or betterthan Viterbi. Results: In this paper we introduce the posterior-Viterbi (PV) anew decoding which combines the posterior and Viterbi algorithms. PV is a twostep process: first the posterior probability of each state is computed andthen the best posterior allowed path through the model is evaluated by aViterbi algorithm. Conclusions: We show that PV decoding performs better than other algorithmsfirst on toy models and then on the computational biological problem of theprediction of the topology of beta-barrel membrane proteins.
机译:背景:隐马尔可夫模型(HMM)是功能强大的机器学习工具,已成功应用于计算分子生物学问题。在可预测的任务中,HMM具有解码算法,以便将最可能的状态路径分配给未知序列,进而将类标记分配给未知序列。维特比和后验解码算法是最常见的。前者在一条路径占主导地位时非常有效,而后者虽然不能保证保留自动机语法,但在多个并发路径具有相似概率时更为有效。第三好的选择是1最好的,表现出与维特比相同或更好。结果:在本文中,我们介绍了结合了后验和维特比算法的后验维特比(PV)新解码。 PV是一个两步过程:首先计算每个状态的后验概率,然后使用Viterbi算法评估通过模型的最佳后验允许路径。结论:我们证明PV解码首先在玩具模型上比在其他算法上表现更好,然后在预测β-桶状膜蛋白拓扑结构的计算生物学问题上表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号